Ist schon die Softwareentwicklung für das Autonome Fahren eine große Herausforderung, so ist es deren Testung und Absicherung umso mehr: Für eine Vielzahl einzelner Verkehrssituationen wird der Nachweis gefordert, dass das Fahrzeug sicher reagiert.
Bei Fahrten auf Autobahnen mit deren geregeltem Verkehrsgeschehen sind solche Nachweise noch in der Realität durchführbar. In wuseligen Innenstädten dagegen ist dies aufgrund der Vielzahl unberechenbarer Verkehrssituationen praktisch unmöglich, und einige Tests verbieten sich schon aus Sicherheitsgründen von selbst.
Ingolstadt als Grundlage
Vor diesem Hintergrund entwickelten die Partner im von SAVeNoW (Funktions- und Verkehrs-Sicherheit für Automatisierte und Vernetzte Mobilität – Nutzen für die Gesellschaft und ökologische Wirkung) bereits in einem Vorgängerprojekt die Werkzeuge und Verfahren für die digitale Kopie einer Stadt. In diese wurden verschiedene Straßensituationen, Verkehrsdichten, Ampeln und Ähnliches integriert, sodass man das Verhalten des autonomen Fahrzeugs in diesen Situationen simulieren kann.
Dieses Knowhow wird nun im Projekt SAVeNoW anhand des Beispiels der Stadt Ingolstadt angewandt. Es bildet statische Elemente wie Straßen, Gebäude, Verkehrs-Infrastruktur und Verkehrsregeln ab, aber auch dynamische Variablen wie die Verkehrsteilnehmer oder die Rahmenbedingungen wie etwa Stoßzeiten oder das Wetter.
„So ein digitaler Zwilling ist eine große Chance“, sagt Prof. Wolfram Remlinger vom IKTD, der die Stuttgarter Teilprojekte in SAVeNoW leitet. „Man erhält Aussagen zur Verkehrssicherheit in hoher Qualität, bevor auch nur ein einziger Kilometer auf der realen Straße getestet wird.“
Bessere Verkehrsprognosen
Neben Sicherheitsaspekten wollen die Forschenden mit dem Digitalen Zwilling auch Lösungsszenarien für Fragen der Verkehrseffizienz, Ökologie und der gesellschaftlichen Akzeptanz entwickeln. Dahinter steht die Frage, inwieweit das Autonome Fahren das politische Ziel, die Verkehrsprobleme in den Städten in den Griff zu kriegen, unterstützen kann.
Ob Menschen das Auto, Motorrad oder Busse und Bahnen nutzen, Fahrrad fahren, zu Fuß gehen oder eine Kombination von alledem, ist eine individuelle Entscheidung. Sie hängt von Faktoren wie Fahrzeit, Verfügbarkeit, Kosten, Fahrkomfort und Sicherheitsempfinden ab. Durch das Autonome Fahren können neue Mobilitätslösungen wie etwa Busse oder Sammeltaxis „on demand“ entstehen, die die Gewichtung dieser Präferenzen verschieben.
„Mit dem Modell des digitalen Zwillings können wir ausprobieren, wie viele Fahrzeuge eine Stadt zur Bewältigung ihres Mobilitätsbedarfs künftig braucht, welche Strecken zu welchen Tageszeiten genutzt werden, welche Auswirkungen dies auf Verkehrsdichte hat und wie sich die Zahl der Leerfahrten entwickelt. All dies ermöglicht verbesserte Verkehrsprognosen – und zwar, bevor die Autos gebaut werden.“
Einflüsse der Fahrzeuginnenraum-Gestaltung
Eine Rolle für die Akzeptanz neuer Lösungen spielt dabei auch, aus welcher Motivation heraus Menschen autonome Fahrzeuge nutzen und was Fahrer tun, wenn ihre Aufmerksamkeit kaum noch durch das Fahrgeschehen gebunden ist. Wollen sie mit KollegInnen diskutieren oder die Zeit für ein Schläfchen nutzen?
Auf der Basis dieser Motive wollen die WissenschaftlerInnen der Universität Stuttgart ermitteln werden, nach welcher Art von Fahrzeuginnenräumen und -ausstattungen die Fahrzeugnutzer unter den neuen Gegebenheiten verlangen. Denkbar wären beispielsweise neue Anordnungen der Sitze, einen Gruppentisch oder im Gegenteil Glaswände zwischen den Sitzen.
Diese sollen als Mixed-Reality-Modell für die Bürger, die als Versuchspersonen in die Forschung einbezogen werden, erlebbar sein. „Wir wollen herausfinden, welche Arten und Konzeptionen von Fahrzeugtypen es künftig geben soll, aber auch die Abläufe und die Umsteigebereitschaft erforschen“, fasst Remlinger zusammen.