Die Nachfrage nach Lithium-Ionen-Batterien (LIB) steigt rasant. Im Jahr 2040 soll der jährliche Bedarf laut einer Studie des Fraunhofer-Instituts für System- und Innovationsforschung ISI bereits auf 6.000 GWh pro Jahr ansteigen. Um diesen enormen Bedarf an Batteriespeicherkapazität beziehungsweise Batteriezellen decken zu können, erfordert es nicht nur einer Vielzahl von Batteriezellfabriken, sondern auch einer gesicherten, wirtschaftlichen und nachhaltigen Rohstoffversorgung.
Angesichts der hohen Nachfrage nach Lithium und den damit verbundenen Herausforderungen der Beschaffung, ist die Frage nach alternativen Batterietechnologien, die ohne Lithium auskommen, äußerst relevant.
Umfeldbericht verschafft detaillierte Übersicht
Auf der Suche nach Alternativen sind vor allem umfassende Aktivitäten in Forschung und Industrie in Bezug auf Natrium-Ionen-Batterien (NIB beziehungsweise. Sodium-Ion-Batteries, SIB) zu erkennen. Bei diesen wird das seltene Lithium durch Natrium ersetzt, welches weltweit vielfach vorhanden ist. Verschiedene neue und auch aus der LIB-Produktion bekannte industrielle Akteure stellen bereits Prototypen her oder sind schon in die Produktion von NIB eingestiegen. Bis zum Jahr 2030 belaufen sich nach Angaben der Zellhersteller die global angekündigten Produktionskapazitäten für NIB-Zellen auf 75 GWh.
Im neu veröffentlichten Umfeldbericht, der in Zusammenarbeit mit dem Fraunhofer Institut für Produktionstechnologie IPT, dem Lehrstuhl PEM der RWTH Aachen und dem Fraunhofer Institut für System- und Innovationsforschung ISI entstanden ist, werden zunächst aktuelle Forschungsaktivitäten und damit verbundene Patente und Publikationen in Europa und weltweit betrachtet. In den Fokus des Berichts rücken anschließend die Ausprägungen der Branchengruppen Rohstoffförderung und Materialentwicklung beziehungsweise -herstellung, (2) die Zellentwicklung und -herstellung sowie (3) die Anwendungen und Integrationskonzepte.
Je Gruppe werden die aktuellen Neuerungen, beziehungsweise Ziele, die F&E-Herausforderungen und die Forschungs- und Industrieakteure im Feld analysiert. Inwiefern die unterschiedlichen Pfade der Fraunhofer FFB die Industrie bei der Lösung von F&E-Herausforderungen an der Schwelle zur industriellen Einsatzfähigkeit von Prozesstechnologien unterstützen können, kann ebenfalls im Bericht nachvollzogen werden.
Inhalte des Berichts
Im Umfeldbericht werden eine Reihe von Fragen beantwortet, die sich mit Blick auf das zukünftige Potenzial von NIB-Zellen stellen:
Inwiefern unterscheiden sich NIB-Zellen von LIB-Zellen?
NIB-Zellen verfügen über eine gute Ressourcenverfügbarkeit, Sicherheit und Tiefentladefähigkeit . Mit Blick auf die Materialien ist Natrium in Deutschland nahezu unbegrenzt und damit kostengünstig verfügbar, zum Beispiel in Form von Natriumchlorid, also Kochsalz oder Natriumcarbonat (Soda). Die erhöhte Rohstoffverfügbarkeit von Natrium (im Vergleich zu Lithium) macht es so zu einem leicht zugänglichen und potentiell skalierbaren Ausgangsrohstoff für Energiespeichersysteme. Natrium verfügt allerdings nicht über eine so hohe Energiedichte wie Lithium. Das heißt die NIB-Zelle kann weniger Energie zur Verfügung stellen als eine vergleichbare LIB-Zelle. Folglich wird derzeit vor allem daran geforscht die Energiedichte zu erhöhen.
Welche Anwendungsfelder kommen für NIB-Zellen in Frage?
Die Bandbreite der im Umfeldbericht analysierten Marktprognosen für NIB ist sehr groß. Der technologische Fortschritt wurde maßgeblich von asiatischen Unternehmen hervorgerufen. Mittelfristig betrachtet, werden die NIB nicht an die Leistungsmerkmale der LIB heranreichen. Ihre Stärke können sie jedoch insbesondere in Bezug auf stationäre Energiespeicher und zylindrische Batteriezellen ausspielen, die für kleinere Geräte und Power Tools verwendet werden. „Die bereits marktreifen Lithium-Ionen-Batterien haben eine deutlich höhere massenbezogene Energiedichte, sodass sie ein breiteres Einsatzspektrum abdecken können.
Die beiden Technologien stehen jedoch keinesfalls in Konkurrenz zueinander, sondern bedienen synergistisch einen starken Wachstumsmarkt. Gerade für urbane Mobilitätslösungen und Heimspeicher können Natrium-Ionen-Batterien aufgrund ihres potenziell günstigeren Preises eine attraktive Lösung sein“ erläutert Dr. Moritz Schaefer, wissenschaftlicher Mitarbeiter in der Gruppe „Materialien“ an der Fraunhofer FFB.
Welchen Beitrag leistet die europäische F&E-Innovationslandschaft, um einen schnellen Einstieg für NIB in einen wirtschaftlich und strategisch unabhängigen Markt zu ermöglichen?
In ihrer Funktion als Beschleunigungseinheit unterstützt die Fraunhofer FFB die Industrie bei der Lösung von F&E-Herausforderungen an der Schwelle zur industriellen Technologienutzung. Dafür stehen deutschen und europäischen Industriepartnern unterschiedliche Innovationspfade der Fraunhofer FFB zur Verfügung, wie die bilaterale Auftrsforschung, die Teilnahme an Fördermaßnahmen in der Batterieforschung oder die industrielle Skalierung in nationalen und europäischen Programmen. Sie sollen dazu beitren die Dauer von Innovationszyklen zu verkürzen.
Dr. Florian Degen, Bereichsleiter für Strategie- und Unternehmensentwicklung an der Fraunhofer FFB, weist auf den weiteren Förderbedarf und Ausbau der F&E-Aktivitäten hin, um den Einstieg in einen unabhängigen europäischen Markt zu ermöglichen: „In Deutschland und Europa sind die Voraussetzungen für den Erfolg von Natrium-Ionen-Batterien gegeben. Für den Aufbau einer NIB-Industrie wird entscheidend sein, wie sich die Preise und die Lieferkette für LIB-Materialien zukünftig entwickeln. Umso wichtiger ist es nun, die Zusammenarbeit zwischen Industrie und Forschung zu fördern, damit deutsche Hersteller frühzeitig in die Produktion von Natrium-Ionen-Batterien einsteigen und diese Technologie als Ergänzung auf dem Batteriemarkt dienen können.“
Hintergrund: Das Projekt „FoFeBat“
Die Studie wurde im Rahmen des durch das Bundesministerium für Bildung und Forschung BMBF geförderten Projekts „FoFeBat“ erstellt. Ziel des Projekts ist der Aufbau der Forschungsfertigung Batteriezelle FFB in Münster, einer Fraunhofer-Einrichtung, die Forschung und Entwicklung an der Batteriezellproduktion bis in den GWh-Maßstab ermöglichen wird. Die Fraunhofer FFB wird insbesondere Technologien hoher Reife (ab Prototypenstadium) aufgreifen und bis zur industriellen Anwendbarkeit skalieren.