Ob Controller, Tastatur oder Maus: Meist drücken wir heute Knöpfe und Tasten, um dem Computer mitzuteilen, was wir wollen. Das beschränkt unsere Kommunikation in der virtuellen Welt, sie läuft nicht so natürlich ab wie mit einem menschlichen Gegenüber. Man muss die richtigen Knöpfe und Buttons an wie auch immer gearteten Eingabegeräten finden und drücken. Gesten und Fingerzeige erfasst der Rechner nicht, außer man nutzt spezielle zusätzliche Sensoren, Kameras und Techniken.
Sinnesorgane für Computersysteme
Ganz ohne zusätzliche Utensilien, Sensoren oder Kameras kommt eine neue Technologie aus: Eine schlichte Kunststofffolie wird dabei zum Sinnesorgan für Computersysteme. Mehr noch: Sie wird zum Medium der spontanen wechselseitigen Kommunikation zwischen Mensch und Maschine. „Mit etwa 50 Mikrometern sind die Elastomere, die wir einsetzen, sehr dünn, und sie sind extrem leicht. Sie bringen aber selbst alles mit für ihren multifunktionalen Einsatz sowohl als vollflächiger und elastisch verformbarer Sensor als auch als Aktor, also als eine Art Mini-Motor“, erklärt Stefan Seelecke, Professor für intelligente Materialsysteme der Universität des Saarlandes, der mit seinem Forschungsteam am Zentrum für Mechatronik und Automatisierungstechnik Zema an den smarten Folien forscht. Das bedeutet konkret: Wird die Folie auf Textilien oder sonstigen Gegenständen aufgebracht, kann sie dem Computer Informationen liefern. Und: Sie kann dem Menschen direkt Rückmeldung geben in Form von haptischen Signalen wie Klopfen, Vibrieren und Druck oder sogar auch durch akustische Signale, also Töne.
Der mögliche Einsatzbereich der durch die Folie smart werdenden Textilien oder Oberflächen ist denkbar weit. So könnte ein Gaming- oder Arbeitshandschuh die Hand als eines der wichtigsten Kommunikationswerkzeuge des Menschen virtuell vernetzen. Die Wissenschaftler Giacomo Morretti und Sebastian Gratz-Kelly aus Seeleckes Team haben mit der Folie einen Arbeitshandschuh ausgekleidet, der das Computersystem wissen lässt, wie der Industriemonteur Hand und Finger bewegt. In einer virtuellen Industrie 4.0-Umgebung könnte der smarte Handschuh den Werker durch Gestenerkennung bei der Wahl des Bauteils oder durch Greifkraftmessung beim Anziehen von Schrauben unterstützen. Mit Warntönen könnte er ihn vor Fehlern bei der Montage bewahren. Auch könnte der Monteur Prozesse einfach durch Bewegungen seiner Hand steuern. Es bedarf nicht viel Fantasie, sich vorzustellen, dass die smarten Handschuhe und Textilien auch in Kombination mit einer VR-Brille virtuelle Spiele und Arbeitswelten viel intuitiver und lebensechter machen würden, als dies bisher mit einem Controller möglich ist.
Ein anderes Anwendungsbeispiel ist ein Kleidungsstück, das Kindern in Quarantänestationen die Körpernähe ihrer Eltern spürbar macht: Wie eine zweite Haut könnte etwa ein Pulli das Streicheln fühlbar übertragen, wenn Mutter oder Vater andernorts über ein zweites smartes Textil streichen, welches dieses Signal überträgt. Hierbei arbeitet das Forschungsteam im Rahmen des EFRE-Projektes „Multi-Immerse“ am Zentrum für Digitale Neurotechnologien zusammen mit dem Team von Professorin Martina Lehser (htwsaar/Zema), Professor Daniel Strauss und Professor Michael Zemlin (Medizinische Fakultät) auf dem Homburger Medizin-Campus der Universität des Saarlandes. „Wir wollen für Kinder in Quarantäne die Möglichkeit schaffen, ihren Eltern in einem virtuellen Raum zu begegnen. Unser Ziel ist, ein realitätsnahes, emotionales Eintauchen in das Erlebnis zu schaffen, das die Sinnesmodalitäten Sehen, Hören und Fühlen einbezieht“, erklärt Martina Lehser.
Kombination aus Sensorik, Aktorik und Akustik
„Technisch gesehen ist die Folie ein dielektrisches Elastomer. Sie ermöglicht eine Kombination aus Sensorik, Aktorik und Akustik“, erklärt Professor Paul Motzki, der mit „Smarte Materialsysteme für innovative Produktion“ eine Brückenprofessur zwischen Universität des Saarlandes und Zema innehat und dort als Direktor den Forschungsbereich „Smarte Materialsysteme“ leitet. Die Silikonfolie ist beidseitig mit einer hochdehnbaren Elektrodenschicht bedruckt und funktioniert sehr sparsam mit elektrischen Feldern. Legen die Forscherinnen und Forscher eine elektrische Spannung an, drückt sich die Folie zusammen. „Sie weicht dabei zur Seite aus und vergrößert ihre Fläche. Hierbei ändern sich zugleich die Messwerte der elektrischen Kapazität“, sagt Paul Motzki.
„Wir können jeder Stellung der Folie, ganz wie sie sich gerade verformt, exakt einen Messwert der elektrischen Kapazität zuordnen“, beschreibt er. Hierdurch hat die Folie Sensoreigenschaft – ohne, dass weitere Technik erforderlich wäre. Wie Hand und Finger die Folie im smarten Arbeitshandschuh dehnen, ziehen oder stauchen entspricht also einem Ablauf vieler einzelner Messwerte. „Mit Hilfe von Algorithmen können diese Bewegungsabläufe in einer Regelungseinheit berechnet und in einem Computersystem weiterverarbeitet werden“, erläutert Doktorand Sebastian Gratz-Kelly, der im Rahmen seiner Doktorarbeit an den smarten Textilien arbeitet.
Ebenso können die Forscher die Silikonfolie gezielt ansteuern und sie alle erdenklichen Bewegungsabläufe vollführen lassen: „Das reicht vom hochfrequenten Vibrieren bis hin zu stufenlosen Hub- oder Klopfbewegungen oder dem Halten einer bestimmten Position. Die Frequenz und Schwingungen können wir beliebig verändern“, sagt Sebastian Gratz-Kelly. Dadurch kann sich die Folie mit der passenden Ansteuerung fühlbar etwa gegen den Finger ihres Benutzers drücken. Sie könnte mit schnellen Hub-Bewegungen aus dem Nichts heraus den Eindruck von Knopfkanten eines Schiebereglers erwecken und einen leichten Widerstand wie beim Drücken echter Schalter simulieren. Auch Töne kann die Folie erzeugen, sogar mehrere gleichzeitig, indem die Forscher sie so ansteuern, dass sich mehrere Schwingungsfrequenzen überlagern.
Auf der diesjährigen Hannover Messe zeigt das Forschungsteam verschiedene Prototypen seiner smarten Textilien und Displays, darunter auch den smarte Arbeitshandschuh.