Katalyse spielt eine zentrale Rolle in der chemischen Industrie und beeinflusst zahlreiche Facetten des täglichen Lebens, wie die Erzeugung von Kunststoffen, die Entwicklung von Medikamenten und die Herstellung von Düngemitteln. Heterogene Elektrokatalyse ist insbesondere im Herzen der Entwicklung nachhaltiger Energietechnologien, da sie die kohlenstofffreie Produktion von Brennstoffen und Chemikalien durch erneuerbaren Strom ermöglicht. Hier erfordern chemische Transformationen nur milde Bedingungen von Temperatur und Druck, da sie durch den Ladungstransfer an der Fest-Flüssig-Grenzfläche angetrieben werden.
Eines der Hauptziele der Forschung des Teams ist es, die Katalysatorselektivität zu erläutern, deren Ursprung oft besonders im Bereich der Elektrokatalyse schlecht verstanden bleibt.
Neues Verständnis für elektrokatalytische Umwandlungen
Diese Analyse konzentriert sich auf einen mikroskopischen Mechanismus, bei dem ein bestimmtes Reaktionszwischenprodukt die Katalysatoroberfläche verlässt, um als frühes, teilweise umgewandeltes Produkt erkannt zu werden. Ein neues, mehrskaliges kinetisches Modell zeigt, wie die Selektivität von der Rate des Transports der Spezies durch den Elektrolyten abhängt und quantifiziert den Einfluss der Dichte katalytisch aktiver Stellen, auch bekannt als Katalysatorrauheit. Trotz seiner Einfachheit kann das Modell eine Reihe von Trends reproduzieren, die in der experimentellen Literatur gefunden wurden.
Dieses Ergebnis demonstriert die Allgemeingültigkeit des vorgeschlagenen Mechanismus und etabliert Rauheit als einen Schlüsselbeschreiber der Katalysatormorphologie über alle relevanten Längenskalen hinweg. Die Einsicht verbessert das grundlegende Verständnis von Reaktionsmechanismen in der Elektrokatalyse und schlägt neue Wege vor, um die Selektivität von Katalysatoren und den Langzeitbetrieb zu verbessern.