Auf der Suche nach neuen medizinischen Wirkstoffen werden Moleküle, deren Atome ringförmig miteinander verknüpft sind, immer wichtiger. Solche Ringsysteme besitzen besonders geeignete Eigenschaften für die Herstellung von Wirkstoffen und treiben die Entwicklung neuartiger Behandlungen von bösartigen Tumoren, neurodegenerativen Erkrankungen und Infektionskrankheiten an.
Chemikern um Prof. Dr. Frank Glorius von der Westfälischen Wilhelms-Universität (WWU) Münster ist es nun gelungen, neue medizinisch relevante kleine Molekülringe zu synthetisieren, die schwierig herzustellen sind, weil sie besonders empfindlich sind.
Neuartige Synthese
Unter Chemikern gilt insbesondere die Synthese kleiner Ringsysteme aus sogenannten aromatischen Verbindungen als schwierig. Außerdem wird dafür besonders viel Energie benötigt. Eine weitere Hürde: Die Energie muss selektiv an die Ausgangsstoffe abgegeben werden, nicht aber an die hitzeempfindlichen Produkte.
Das Team um Glorius hat nun eine Strategie entwickelt, bei dem sichtbares Licht als kostengünstige Energiequelle einen Photokatalysator aktiviert, der die Reaktion antreibt. Der Photokatalysator absorbiert das Licht und überträgt dessen Energie auf die Ausgangsstoffe. Auf diese Weise ermöglicht er eine hocheffiziente und milde Synthese, die nicht oder kaum mit unerwünschten Nebenreaktionen einhergeht.
„Wir sehen unsere Studie als einen Durchbruch in der Synthesechemie“, unterstreicht Erstautor Dr. Jiajia Ma. „Sie zeigt, dass man Lichtenergie gezielt zur Erzeugung kleiner Ringsysteme einsetzen kann. Dass wir durch verschiedene Reaktionspartner unterschiedliche kleine Ringsysteme herstellen können, bietet viele Möglichkeiten für die Herstellung von Wirkstoffen.“ Als Ausgangsstoffe haben die Chemiker ausschließlich leicht verfügbare und kostengünstige Rohstoffe eingesetzt.
Die Studie entstand in Zusammenarbeit mit Prof. Kendall Houk, einem weltweit anerkannten Experten für Computerchemie von der University of California in Los Angeles (USA), der seine Computerberechnungen in Kooperation mit Prof. Shuming Chen vom renommierten Oberlin College in Ohio durchführte. Gemeinsam gelang es den Wissenschaftlern, den zugrundeliegenden Reaktionsmechanismus zu erklären.