Lithium-Ionen-Batterien (LIBs) versorgen Smartphones und Tablets mit Strom, treiben Elektrofahrzeuge an und speichern Strom in Kraftwerken. Hauptbestandteile der meisten LIBs sind Lithium-Kobaltoxid (LCO)-Kathoden, Graphit-Anoden und flüssige Elektrolyte, die bewegliche Ionen für die entkoppelten Kathoden- und Anoden-Reaktionen liefern. Sie bestimmen die Eigenschaften der Grenzschicht, die sich auf den Elektroden bildet, und damit zum Beispiel. die Zyklusleistung.
Veraltete Formel sorgt für hohe Kosten
Dennoch basieren kommerzielle Elektrolyte meist noch auf einem System, das vor mehr als 30 Jahren formuliert wurde: 1,0 bis 1,2 mol/l Lithium-Hexafluorphosphat (LiPF6) in Carbonsäureestern (Carbonat-Lösungsmittel). In den letzten zehn Jahren wurden hochkonzentrierte Elektrolyte (> 3 mol/l) entwickelt, die die Leistungsfähigkeit von Batterien erhöhen, denn sie fördern die Bildung robuster anorganisch dominierter Grenzschichten.
Allerdings sind sie hochviskos, schlecht benetzend und schlecht leitfähig. Wegen der hohen Mengen an Lithium-Salzen sind sie zudem sehr teuer – oft ein kritischer Parameter für die Machbarkeit. Um diese Kosten zu senken, wird inzwischen auch an ultraniedrig konzentrierten Elektrolyten geforscht ( < 0,3 mol/l). Der Nachteil: Das Lösungsmittel wird in der Zelle stärker zersetzt als die wenigen Salz-Anionen, was zu einer organisch dominierten, weniger stabilen Grenzfläche führt.
Stabile Neuentwicklung als Alternative?
Das Team von der Ningbo University (China) und der University of Puerto Rico am Rio-Piedras-Campus (USA) um Jinliang Yuan, Lan Xia und Xianyong Wu hat jetzt einen ultraniedrig konzentrierten Elektrolyten entwickelt, der sich für praktische Anwendungen in Lithium-Ionen-Batterien eignen könnte: LiDFOB/EC-DMC. LiDFOB (Lithium-Difluor(oxalato)borat) ist ein gängiges Additiv und wesentlich kostengünstiger als LiPF6.
EC-DMC (Ethylcarbonat/Dimethylcarbonat) ist ein kommerzielles Carbonat-Lösungsmittel. Der Elektrolyt hat einen rekordverdächtig niedrigen Salzgehalt von 2 Gewichtsprozent (0,16 mol/l), aber eine ausreichend hohe ionische Leitfähigkeit (4,6 mS/cm) für den Batteriebetrieb. Zudem ermöglichen die besonderen Eigenschaften der DFOB–-Anionen die Bildung einer anorganisch dominierten, robusten Grenzschicht auf LCO- und Graphit-Elektroden, die eine ausgezeichnete Zyklusstabilität in Halb- und Vollzellen ergab.
Während das gängige LiPF6 sich in Gegenwart von Feuchtigkeit zersetzt und hochtoxisches, korrosives Fluorwasserstoffgas (HF) freisetzt, ist LiDFOB feuchtigkeits- und luftstabil. Statt unter strikten Trockenraumbedingungen könnten LIBs mit LiDFOB unter Umgebungsbedingungen hergestellt werden – eine weitere Kostenersparnis. Auch das Recycling wäre deutlich unproblematischer und damit nachhaltiger.