Wer ein Handy benutzt, verwendet sie. Wer im Auto fährt, verwendet sie. Und wer eine moderne Waschmaschine in Betrieb nimmt, verwendet sie auch: Transistoren sind aus unserem technologischen Alltag nicht wegzudenken, viele Millionen von ihnen befinden sich auf heutigen Computerchips. Das bedeutet auch, dass die Zuverlässigkeit dieser Halbleiter-Bauteile immer wichtiger wird.
Die Elektrotechnikerin und Physikerin Katja Waschneck hat an der TU Wien in Zusammenarbeit mit der Firma Infineon Technologies untersucht, wie sich der Alterungsprozess von Feldeffekt-Transistoren aus Silizium oder Siliziumkarbid mikroskopisch verstehen lässt. Sie untersuchte, mit welchen Modellen und Experimenten man bessere, zuverlässigere und stabilere Bauteile entwickeln kann. Dafür wurde sie am 22. April mit dem Hannspeter-Winter-Preis der TU Wien ausgezeichnet.
Feldeffekt-Transistor: Ein Widerstand zum Ein- und Ausschalten
„Elektronische Bauteile verändern sich im Lauf der Zeit, und dieser Alterungsprozess ist in der Mikroelektronik ein großes Problem – ganz besonders in sicherheitsrelevanten Anwendungen“, sagt Waschneck. Der wichtigste Effekt, der die Lebensdauer von Halbleiterbauteilen verringert, ist die sogenannte Bias-Temperatur-Instabilität (BTI), die Waschneck in ihrer Dissertation genau unter die Lupe nahm.
Bei einem Feldeffekt-Transistor wird über ein elektrisches Feld, das sich von außen steuern lässt, der Stromfluss durch den Transistor ein- oder ausgeschaltet. Die elektrische Spannung, die am Transistor angelegt wird, entscheidet, ob sich der Transistor wie ein sehr großer oder ein winzig kleiner elektrischer Widerstand verhält. Diese Eigenschaft macht den Transistor zum wichtigsten Grundbaustein logischer Schaltungen.
Normalerweise werden Transistoren heute aus Silizium hergestellt. Waschneck nahm allerdings auch das Material Siliziumkarbid (SiC) genau unter die Lupe. Der Halbleiter SiC kann bei höherer Temperatur, höherer Frequenz und höherer Leistungsdichte betrieben werden als reines Silizium. Das bedeutet, dass man mit kleineren Kühlkörpern auskommt. Dadurch sind auf SiC basierende Systemlösungen effizienter, leichter, kompakter und auch kostengünstiger als Systeme, die rein auf Siliziumtechnologie aufgebaut sind. Es kommt zu weniger Verlusten, die Energieeffizienz wird erhöht.
Bestehende Modelle zu rechenintensiv
Eine wichtige Eigenschaft des Transistors ist seine Schwellspannung – jene elektrische Spannung, die man anlegen muss, um überhaupt irgendeinen Stromfluss zu ermöglichen. Ist die am Gate angelegte Spannung kleiner als diese Schwelle, fließt kein Strom.
„Diese Schwellspannung kann sich aber im Lauf der Zeit verschieben, in Abhängigkeit der Temperatur und der angelegten Spannung“, sagt Waschneck. „In den letzten Jahren hat man große Fortschritte in der physikalischen Modellierung dieses Alterungsmechanismus erzielt. In der industriellen Praxis sind diese Modelle aber nicht geeignet, weil sie sehr kompliziert sind und zu viel Rechenzeit benötigen.“
Waschneck entwickelte daher einfachere Modelle, mit denen diese Prozesse noch immer ausreichend genau aber in der Schaltungssimulation viel schneller berechnet werden können. Gerade für Siliziumkarbid-Transistoren waren solche Modelle bisher kaum vorhanden.
Bei der Modellentwicklung ist es wichtig, Theorie und Experiment zu verbinden: Um bessere, zuverlässigere Bauteile entwickeln zu können, braucht man eine gute Abstimmung zwischen theoretischen Modellen, die am Computer in akzeptabler Zeit gerechnet werden können, und Experimenten, die mit überschaubarem Aufwand die gewünschten Parameter liefern können.