NMC-Akkus haben die herkömmlichen Lithium-Kobaltoxid-Akkus vom Markt verdrängt. Sie sind billiger und sicherer und werden deshalb unter anderem für Elektro- und Hybridautos eingesetzt. Ihre Kathoden bestehen aus einer Mischung aus Nickel, Mangan, Kobalt und Lithium bestehen.
Wohin verschwinden die Ionen beim Aufladen?
Doch auch bei ihnen tragen nur wenig mehr als 50 Prozent der Lithium-Atome zur tatsächlichen Kapazität bei. Ließen sich bei der ersten Entladung der an der TU München untersuchten Elektroden noch 62 Prozent der Lithium-Atome aus dem Kristallgitter herauslösen, so kehren beim Wiederaufladen nur noch 54 Prozent zurück.
Bei den darauffolgenden Zyklen ist der Verlust zwar wesentlich geringer, jedoch sinkt die Kapazität schleichend immer weiter ab. Nach einigen Tausend Zyklen ist die Restkapazität dann so gering, dass der Akku unbrauchbar wird.
Nepomuc ist dem Rätsel auf der Spur
Untersuchungen anderer Gruppen zeigten, dass beim Laden offenbar nicht alle Lithium-Atome wieder in die passenden Lücken im Kristallgitter zurückfinden. Bisherige Methoden konnten allerdings nicht die dafür verantwortlichen atomaren Prozesse zeigen. Die Lösung brachte die interdisziplinäre Zusammenarbeit: Irmgard Buchberger, Mitarbeiterin am Lehrstuhl für Technische Elektrochemie der TU München wandte sich an Stefan Seidlmayer, der am Heinz Maier-Leibnitz Zentrum (MLZ) an der Forschungs-Neutronenquelle FRM II Akkutechnologien erforscht.
Er vermittelte den Kontakt zu Christoph Hugenschmidt, der am MLZ das Instrument Nepomuc betreut. Es erzeugt Positronen, die Antiteilchen der Elektronen, mit denen sich gezielt nach Löchern in Kristallgittern fahnden lässt.
Positronen zeigen Löcher im Gitter
„Als extrem kleine und hoch bewegliche Teilchen können Positronen durch Materialien hindurch fliegen. Treffen sie auf ein Elektron, so enden sie auf der Stelle in einem Energieblitz, finden sie eine leere Stelle im Kristallgitter, überleben sie deutlich länger“, erläutert Markus Reiner, der die Versuche am Instrument Nepomuc durchgeführt hat.
Da die Positronen für kurze Zeit in den leeren Gitterplätzen gefangen sind, bevor sie schließlich doch zerstrahlen, lassen sich mit der Positronen-Annihilationsspektroskopie genannten Methode genaue Rückschlüsse auf die lokale Umgebung ziehen – und dies mit einer sehr hohen Empfindlichkeit, denn es lassen sich Fehlstellenkonzentrationen von bis zu 1:10 Millionen detektieren.
Gezielte Materialentwicklung
Die Studie zeigt, dass beim Wiederaufladen verbleibende „Löcher“ im Gitter des Kathodenmaterials mit dem irreversiblen Kapazitätsverlust einhergehen und diese Blockade auf die mangelhafte Befüllung der Löcher im Kathodenmaterial zurückzuführen ist.
„Nun sind wir als Chemiker wieder an der Reihe“, sagt Prof. Hubert Gasteiger, Inhaber des Lehrstuhls für Technische Elektrochemie. „Mit gezielter Modifikation des Kathodenmaterials können wir nun nach Möglichkeiten suchen, diese Barriere zu umgehen.“
„Für die Batterieforschung ist die Garchinger Forschungs-Neutronenquelle ein extrem hilfreiches Instrument“, sagt Ralph Gilles, der am FRM II die Messungen für das Batterieforschungsprojekt ExZellTUM koordiniert. „Mit Neutronen können wir insbesondere kleine Atome wie das Lithium gut sehen, sogar durch die Metallhülle hindurch, bei laufendem Betrieb. Mit den Positronen haben wir nun eine weitere Möglichkeit erschlossen, die Prozesse besser zu verstehen und damit weiter verbessern zu können.“
Die Forschungsarbeiten wurden unterstützt aus Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) im Rahmen des Projekts ExZellTUM. Auch der Betrieb des für die Studie genutzten Coincident Doppler-Broadening Spectrometers wird aus Mitteln des BMBF unterstützt.