DFG fördert neues Projekt an der Universität Bayreuth Carnot-Batterien als Energiespeicher der Zukunft

Die Carnot-Batterie könnte in Zukunft, bei der Energiespeicherung, eine wichtige Rolle spielen.

Bild: iStock; Paul Wallén
13.07.2023

Für eine Transformation der Energieversorgung, die fossile Brennstoffe durch erneuerbare Energiequellen ersetzt, bedarf es neuer Technologien zur Speicherung von Solar- und Windstrom. Eine vielversprechende Technologie sind Carnot-Batterien, die Strom in Form von Wärme zwischenspeichern.

Ein am 1. Juli 2023 gestartetes Projekt am Lehrstuhl für Technische Thermodynamik und Transportprozesse (LTTT) im Zentrum für Energietechnik (ZET) der Universität Bayreuth befasst sich mit den Arbeitsfluiden für diese Energiesysteme. Als Teil des DFG-Schwerpunktprogramms 2403 „Carnot-Batterien: Inverser Entwurf vom Markt bis zum Molekül“ wird es zunächst für drei Jahre mit rund 298.000 Euro gefördert.

Was ist eine Carnot-Batterie?

Carnot-Batterien sind nach dem Begründer der Thermodynamik – dem französischen Physiker und Ingenieur Nicolas Léonard Sadi Carnot (1796-1832) – benannt, der die optimale Umwandlung von Wärme in Arbeit berechnet hat. Sie können in Zukunft eine wichtige Rolle dabei spielen, die Verfügbarkeit erneuerbarer Energien und die Nachfrage auf dem Energiemarkt technisch aufeinander abzustimmen.

Eine Carnot-Batterie besteht im Prinzip aus drei hintereinander geschalteten Komponenten: einer Hochtemperatur-Wärmepumpe, einem Wärmespeicher und einer Wärmekraftmaschine. Die Wärmepumpe wandelt den durch Sonne und Wind erzeugten, aber nicht unmittelbar benötigten Strom in Wärme um und belädt mit dieser Wärme den Speicher. Die Wärmekraftmaschine ist in der Lage, den Speicher entsprechend der Nachfrage auf dem Energiemarkt zu entladen und dabei die Wärme in Strom zurückzuwandeln. Carnot-Batterien werden deshalb auch als Strom-Wärme-Strom-Speicher bezeichnet.

„Erste Demonstrationsanlagen zeigen, dass mit Carnot-Batterien ein hoher Gesamtwirkungsgrad erzielt werden kann: Bis zu 70 Prozent des eingespeisten, aus erneuerbaren Energiequellen stammenden überschüssigen Stroms können am Ende zurückgewonnen werden. Die Speicherkosten pro Kilowattstunde liegen dabei im Bereich von Pumpspeicherkraftwerken oder elektrochemischen Batterien“, erklärt Dr.-Ing. Florian Heberle, wissenschaftlicher Mitarbeiter am Lehrstuhl LTTT und Geschäftsführer des ZET der Universität Bayreuth.

Er weist zugleich darauf hin, dass es weiteren Forschungs- und Entwicklungsbedarf gibt, um die Potenziale dieser Form der Energiespeicherung voll ausschöpfen zu können: „Das neue DFG-Schwerpunktprogramm wird in den nächsten Jahren einen erheblichen Beitrag dazu leisten, das Zusammenwirken der drei Komponenten und die Integration von Carnot-Batterien ins Gesamtsystem der elektrischen Energieversorgung weiterzuentwickeln und technologisch zu optimieren.“

Das richtige Arbeitsfluid finden

Das an der Universität Bayreuth angesiedelte Projekt konzentriert sich auf die Herausforderung, optimale Arbeitsfluide für Carnot-Batterien zu finden. Entscheidend sind dabei drei Kriterien: Effizienz, Betriebssicherheit und ein geringes Erderwärmungspotenzial (Global Warming Potential, GWP). Es sollen also während des laufenden Betriebs möglichst wenig Treibhausgase freigesetzt werden.

Die Untersuchungen werden sich vor allem mit speziellen Gemischen aus natürlichen Kohlenwasserstoffen und ungesättigten teilhalogenierten Kältemitteln befassen. Es geht dabei um die präzise Identifizierung thermochemischer Eigenschaften, aber auch um die praktische Erprobung der Fluide im Hinblick auf die sehr unterschiedlichen Funktionen, die sie im System einer Carnot-Batterie erfüllen müssen. Am Lehrstuhl LTTT stehen dafür neueste Prüfstände und Messtechnologien zur Verfügung.

„Die Forschungsarbeiten in Bayreuth sind eng vernetzt mit den weiteren Projekten des DFG-Schwerpunktprogramms, die auf andere technologische Aspekte von Carnot-Batterien fokussiert sind. Der wechselseitige Austausch zwischen den beteiligten Forschungsstandorten in Deutschland und die Verknüpfung der neuen Erkenntnisse sind hier besonders wichtig, damit wir bei der nachhaltigen Transformation der Energieversorgung vorankommen. Nur mit neuen leistungsfähigen Speichertechnologien wird sich die für den Klimaschutz unverzichtbare Dekarbonisierung der Energiesysteme verwirklichen lassen“, sagt Prof. Dr.-Ing. Dieter Brüggemann, Inhaber des Lehrstuhls LTTT und Direktor des ZET, der das Projekt gemeinsam mit Heberle leitet.

Bildergalerie

  • Versuchsstand zur Erprobung von Arbeitsfluiden an der Universität Bayreuth

    Versuchsstand zur Erprobung von Arbeitsfluiden an der Universität Bayreuth

    Bild: Universität Bayreuth / ZET.

Firmen zu diesem Artikel
Verwandte Artikel