Das Facettenauge einer Wespe brachte Burschka auf eine Idee. Dadurch, dass das Insekt seinen Körper horizontal hin- und herschwenkt, sondiert sie, welche Gegenstände nah sind und welche weiter weg. So baut sie ihre mentale Landkarte auf, wenn sie unterwegs ist.
60 Messungen pro Sekunde für mehr Sicherheit
Ähnlich funktioniert eine Lösung, mit der Burschka, Co-Head für Perzeption im Munich Institute of Robotics and Machine Intelligence (MIRMI) der TUM herausfindet, ob Drohnen oder Autos ein Zusammenstoß mit anderen Objekten droht. 60 Mal pro Sekunde checkt sein Computersystem die Bildpunkte einer Kamera und bestimmt die „Kollisionsverhältnisse“. „Wir verfolgen bis zu einer Million Pixel eines Bildes in Echtzeit“, erläutert Burschka.
Für die Berechnung dieses so genannten optischen Flusses braucht er keinen Supercomputer, sondern „nur“ einen sehr leistungsfähigen Grafikprozessor, der die Bildverarbeitung übernimmt und einen weiteren Prozessor, der die Kollisionswege auswertet und eine Kamera. „Wir sehen uns die Merkmale im Bild an, die detektierbar sind und schauen, wie sie sich über das Bild bewegen“, beschreibt Burschka.
Zweidimensionale Bilder als Grundlage
Der TUM-Professor benötigt für die Berechnung der aktuellen Gefahr einer Kollision nur zweidimensionale Bilder aus einer Perspektive, wie die Wespe, die einzelne Punkte fixiert und deren Veränderung wahrnimmt. Oder wie ein Seemann, der nach der stehenden Peilung vorgeht. Ein Schiff ist nach Definition der „stehenden Peilung“ dann auf Kollisionskurs, wenn sich bei Annäherung der Fahrzeuge die Peilung nicht oder nur geringfügig ändert. „Ein Zusammenstoß ist dann am besten detektierbar, wenn man darauf achtet, welche Objekte um einen herum sich nicht bewegen“, sagt Burschka.
Der Wissenschaftler der TUM berechnet, wo und in welcher Entfernung Objekte an der Kamera vorbeifliegen, also die „Beobachtungsebene durchstoßen“. Herkömmlicherweise nutzen etwa Experten für das autonome Fahren mehrere Kameras, die die Abstände zu anderen Objekten über Vektoren im Nahbereich berechnen. „Wenn die Objekte weit von der Kamera entfernt sind, liefert das 3-D-Verfahren keine zuverlässigen Ergebnisse mehr“, erläutert Burschka. Dann ist die Bewegung der einzelnen Punkte zwischen den Bildern nicht mehr wahrnehmbar.
Time to Interaction löst die metrische Zustandsbestimmung ab
Mit der neuen Methode werden Objekte, die noch weit weg sind, aber dem Betrachtenden sehr schnell direkt entgegenkommen, als gefährlicher erkannt als andere, die augenblicklich näher sind, sich aber in die gleiche Richtung wegbewegen. „Damit wird die Priorisierung nicht aufgrund der Bewegung, sondern aufgrund der dynamischen Kollisionsverhältnisse durchgeführt“, sagt Burschka. Sämtliche „Merkmale“ im Bild sind nun unter Beobachtung und die potenziell gefährlichen lassen sich entsprechend kennzeichnen.
„Wir messen die Time to Interaction“, sagt Burschka, also die Zeit, die vergeht, bis es zu einer Kollision kommt. Die neue Methode erlaubt es den Wissenschaftler:innen Bewegungen mit einer einzelnen Kamera zu analysieren, wobei sich die Kamera ebenso bewegt wie das Objekt. „Im Gegensatz zur metrischen Rekonstruktion ist dieser Ansatz deutlich günstiger und robuster“, ist Burschka überzeugt. Der Einsatz der Time to Interaction wäre also ein Paradigmenwechsel für die Forschung. Einsetzen will der Professor seine Erfindung bei Drohnen, in vernetzten Fahrzeugen und in der Servicerobotik.