Ferromagnetismus ist ein wichtiges physikalisches Phänomen, das für viele Technologien zentral ist. Bekannt ist es von Metallen wie Eisen, Kobalt und Nickel, die bei Raumtemperatur magnetisch sind, weil ihre Elektronenspins parallel ausgerichtet sind. Erst bei sehr hohen Temperaturen verlieren diese Materialien ihre magnetischen Eigenschaften.
Die Wissenschaftler um Prof. Dr. Richard Warburton vom Departement Physik und Swiss Nanoscience Institute der Universität Basel haben gezeigt, dass auch Molybdändisulfid unter bestimmten Bedingungen ferromagnetische Eigenschaften hat. Bei niedrigen Temperaturen und einem externen Magnetfeld richten sich die Elektronenspins in diesem Material ebenfalls parallel aus.
In ihrer aktuellen Studie haben die Forschenden festgestellt, wie viel Energie notwendig ist, um einen einzelnen Elektronenspin in diesem ferromagnetischen Zustand umzudrehen. Diese sogenannte Austauschenergie ist wichtig, da sie die Stabilität der ferromagnetischen Eigenschaften beschreibt.
Mit Detektivarbeit zur einfachen Lösung
„Wir haben Molybdändisulfid mit einem Laser angeregt und die emittierten Spektrallinien analysiert“, erklärt Dr. Nadine Leisgang, die Hauptautorin der Studie. Jede Spektrallinie entspricht einer bestimmten Wellenlänge und Energie. Durch die Messung des Abstands zwischen bestimmten Spektrallinien konnten die Forschenden die Austauschenergie bestimmen. Sie fanden heraus, dass diese Energie in Molybdändisulfid nur etwa zehnmal kleiner ist als in Eisen, was zeigt, dass der Ferromagnetismus des Materials sehr stabil ist.
„Obwohl die Lösung einfach erscheint, war viel Detektivarbeit nötig, um die Spektrallinien richtig zuzuordnen“, sagt Richard Warburton.
Zweidimensionale Materialien
2D-Materialien sind in der Materialforschung sehr wichtig, da sie aufgrund quantenmechanischer Effekte besondere physikalische Eigenschaften haben. Sie können zudem zu sogenannten van-der-Waals-Heterostrukturen gestapelt werden.
Im Beispiel der Studie ist die Molybdändisulfidschicht von hexagonalem Bornitrid und Graphen umgeben. Diese Schichten werden durch schwache van-der-Waals-Bindungen zusammengehalten und besitzen einzigartige Eigenschaften, die sie für die Elektronik und Optoelektronik interessant machen. Das Verständnis ihrer elektrischen und optischen Eigenschaften ist wichtig, um sie in zukünftigen Technologien nutzen zu können.