Analyse von aktiven Teilchen Wie funktioniert die Quantenmechanik?

Durch das neu entwickelte Modell kann unter anderem der Tunneleffekt noch besser beschrieben und erklärt werden.

Bild: iStock; Ploystock
16.03.2023

Physiker um Prof. Dr. Raphael Wittkowski und Prof. Dr. Uwe Thiele vom Institut für Theoretische Physik der Westfälischen Wilhelms-Universität (WWU) Münster haben ein neues Modell für die Dynamik von Systemen aus vielen Teilchen entwickelt, die sich von alleine fortbewegen.

Die Untersuchung von aktiven Teilchen ist eines der am schnellsten wachsenden Teilgebiete der Physik. Als aktive Teilchen bezeichnen Physikerinnen und Physiker Objekte, die sich durch einen internen Antrieb von alleine fortbewegen. Dazu zählen Lebewesen wie schwimmende Bakterien und Fische, fliegende Vögel oder herumlaufende Menschen, aber auch künstliche Nanoroboter, die zum Beispiel für den Medikamententransport im Körper eingesetzt werden können. Insbesondere interessieren sich die Fachleute für das Verhalten von Systemen aus vielen aktiven Teilchen, um hierdurch beispielsweise Vogelschwärme, Biofilme oder Menschenansammlungen zu verstehen.

Die Physiker Dr. Michael te Vrugt, Tobias Frohoff-Hülsmann, Prof. Dr. Uwe Thiele und Prof. Dr. Raphael Wittkowski vom Institut für Theoretische Physik der Westfälischen Wilhelms-Universität (WWU) Münster haben nun in Zusammenarbeit mit Prof. Dr. Eyal Heifetz von der Universität Tel Aviv (Israel) ein neues Modell („active model I+“) für die Dynamik von Systemen aus vielen aktiven Teilchen entwickelt.

Untersuchung von Tunneleffekt und dunkler Materie

„Dieses Modell beschreibt insbesondere Teilchen, auf die nur geringe Reibungskräfte wirken, ein bislang nur wenig untersuchter Fall“, erklärt Erstautor te Vrugt. Hierbei hat das Team festgestellt, dass dieses Modell für bestimmte Parameterwerte genauso aussieht wie die Schrödingergleichung. Die Schrödingergleichung ist die Grundgleichung der Quantenmechanik, welche das Verhalten von extrem kleinen Teilchen wie Elektronen oder Protonen beschreibt. Durch diese Analogie ist es möglich, in aktiven Systemen Analogien zu aus der Quantenmechanik bekannten Effekten zu finden. Die Physiker untersuchten in der aktuellen Arbeit zum einen den Tunneleffekt und zum anderen dunkle Materie.

Der Tunneleffekt ist ein quantenmechanisches Phänomen, bei dem ein Teilchen durch eine Barriere hindurchdringt („tunnelt“), obwohl es dafür eigentlich zu wenig Energie hat. Dieser Effekt spielt eine Rolle beim radioaktiven Zerfall, ist aber auch beispielsweise für den Speichervorgang in USB-Sticks wichtig. Die Autoren konnten nun zeigen, dass sich die Dichteverteilung von aktiven Teilchen, die mit einem Laserstrahl beleuchtet werden, in etwa wie die Wahrscheinlichkeitsverteilung eines quantenmechanischen Teilchens beim Tunneleffekt verhält.

Dunkle Materie ist eine Form von Materie, die nicht mit sichtbarem Licht wechselwirkt und deren Zusammensetzung bislang nicht verstanden ist, von deren Existenz man aber aus einer Vielzahl astronomischer Beobachtungen weiß. In der Studie wies das Team nun durch einen Vergleich der entsprechenden mathematischen Modelle nach, dass sich elektrisch geladene aktive Teilchen ähnlich wie dunkle Materie verhalten. „Dies eröffnet eine Möglichkeit, kosmologische Strukturbildungsprozesse im Labor nachzustellen“, kommentiert Raphael Wittkowski.

Firmen zu diesem Artikel
Verwandte Artikel