An der Hochschule für angewandte Wissenschaften Würzburg-Schweinfurt (FHWS) wird an der Entwicklung, Integration, dem Aufbau und Test eines Brennstoffzellensystems für die allgemeine Luftfahrt geforscht und ein entsprechender Brennstoffzellenantrieb konzipiert. Beteiligt daran sind das Labor für Wasserstofftechnik und das Technologietransferzentrum Elektromobilität an der FHWS in Kooperation mit Industriepartnern.
Optimale Balance zwischen Gewicht und Flugstrecke finden
Um Kohlenstoffdioxid-arm und damit möglichst umweltgerecht fliegen zu können, kann man nicht einfach den Slogan einer Autovermietung - statt Kerosin auf der Autobahn Adrenalin auf der Landebahn – umsetzen, die Antriebssysteme austauschen und Wasserstoff als Energiequelle in Flugzeugtriebwerken nutzen. Die Flugzeuge müssen vielmehr künftig rund um diese veränderten Bedingungen und Anforderungen des Flugzeug-Verkehrs neu konzipiert werden.
Zum einen benötigt atmosphärischer Wasserstoff ein sehr großes Volumen, wobei Platz an Bord knapp und kostbar ist: Das Gas, das bei -253 °C flüssig und/oder unter hohem Druck komprimiert erst für Antriebe nutzbar wird, erfordert doppelwandige, zylindrische oder kugelförmige Tanks.
Das zusätzliche Gewicht der Brennstoffzelle und deren Peripheriegeräte wie zum Beispiel einer Kühlung drücken die zu erreichende Flugstrecke nach unten.
Eine weitere Fragestellung ist die der Logistik: Wie kann der Wasserstoff für die Luftfahrt bereitgestellt werden – genannt seien hier beispielsweise die Aspekte Infrastruktur und logistische Versorgung an Flughäfen sowie die Produktion des Wasserstoffs aus regenerativen Energien.
Wie kommt der Wasserstoff in Flugzeuge?
Wie kann in Luftfahrzeugen Wasserstoff genutzt werden? Genannt werden drei Verwendungsmöglichkeiten im Technikjournal für Wasserstoff in der Luftfahrt:
In umgerüsteten Gasturbinen könnte reiner Wasserstoff verbrannt werden, ohne dass CO2 freigesetzt wird. Jedoch wird nur ein Wirkungsgrad von circa vierzig Prozent erreicht.
Wasserstoff kann auch durch Brennstoffzellen in elektrische Energie umgewandelt werden und so einen Elektromotor betreiben. Zwar hat diese Methode einen Wirkungsgrad von mehr als 60 Prozent und liegt damit höher als die Gasturbine, aber die Leistungsdichte ist geringer.
Bei der dritten Variante wird aus Wasserstoff in Kombination mit CO2 synthetisches Kerosin produziert: Bei diesem sogenannten Power-to-Liquid-Verfahren wird während der Herstellung aus der Atmosphäre CO2 entzogen. Dieses wird mit Wasserstoff zu einem Rohöl verbunden und dann zu Kerosin weiterverarbeitet. Fliegt mit diesem Kraftstoff ein Flugzeug, emittiert es somit lediglich die gleiche Menge an CO2, wie vorher entzogen wurde. Das Verfahren ist aber energetisch sehr ineffizient und damit teuer.
Das Projekt „HyFly“, das an der FHWS von der Bundesregierung mit 1,1 Millionen Euro gefördert wird, ist in vier Teilprojekte gegliedert und erfolgt in Kooperation mit den Industriepartnern PS-HyTech, Kasaero und Flying AD. Abgeschlossen werden soll das Vorhaben im Herbst 2023. Bis dahin wird geforscht, geprobt, getestet – immer mit dem Ziel, möglichst Gewicht zu reduzieren und nur elementar wichtige Teile einzubauen
Start des Wasserstoff-Flugzeug
Einen weiteren Lösungsansatz, den Antrieb mit sogenannten Brennstoffzellen-Stacks, erläutert Prof. Dr. Johannes Paulus, Dekan der Fakultät Maschinenbau: „Der Brennstoffzellen-Stack erzeugt aus Wasserstoff die elektrische Energie, die eine Batterie laden oder den Elektromotor des Flugzeugs direkt antreiben kann. Ein Stack ist ein Stapel, bestehend aus vielen einzelnen Brennstoffzellen, die elektrisch in Reihe geschaltet sind. In jeder einzelnen Brennstoffzelle wird Wasserstoff kontinuierlich zugeführt und mit dem Sauerstoff der Luft in Wasser und elektrische Energie umgewandelt. Dabei entstehen keinerlei Schadstoffe wie Feinstaub, Stickoxide oder sonstige Schadstoffe.“
Der wissenschaftliche Mitarbeiter und Masterstudent Toni Schott hatte über die Planung des Prüfstands im Schweinfurter Labor seine Bachelorarbeit geschrieben und engagiert sich nun im HyFly-Projekt. Es gebe eine Vielzahl an Herausforderungen, ehe das Kleinflugzeug 2023 zu seinem ersten Testflug starten könne.
So seien beispielsweise die Reaktionen eines Wasserstoff-Flugzeuges in der Luft mit deutlich niedrigeren Temperaturen und Luftfeuchtigkeit noch nicht in Gänze bekannt: Beispielsweise stelle das Befeuchten der Membran in Brennstoffzellen eine Herausforderung dar: Über einen Membranbefeuchter werden der feuchte Abgasstrom aus der Brennstoffzelle und der trockene Frischluftstrom über eine halbdurchlässige Membran geleitet. Viele Komponenten, so Paulus, müssten von Grund auf neu gedacht und konzipiert werden. Ein großer Vorteil: Brennstoffzellen lassen sich in Testphasen leicht recyceln und erzeugen keinen umweltbelastenden Abfall.
Projekt in Kooperation mit Partnern
Die Hochschule forscht und entwickelt gemeinsam mit ihren Partnern: Ihr fällt dabei der Part der Systemintegration, des Aufbaus sowie der experimentellen und theoretischen Analyse eines Brennstoffzellensystems für Leichtflugzeuge sowie die Optimierung der Brennstoffzellen-Antriebskomponenten zu. Im Bad Neustädter Technologietransfer-Zentrum Elektromobilität wird das rein elektrische System der Batterien untersucht. Im Anschluss an die Analysen folgt in einem zweiten Schritt die Zusammenführung der Einzelteile zu einem Gesamtantriebsstrang.
Mögliche Marktaussichten zum Flugbetrieb ab 2035
Der Luftverkehr verursacht nach Angaben des Bundesverbandes der Deutschen Luftverkehrswirtschaft 2,8 Prozent der weltweiten CO2-Emissionen mit einem innerdeutschen Luftverkehrsanteil von 0,007 Prozent – der überwiegende Teil der deutschen Emissionen entsteht in den Bereichen Strom / Wärme (44 Prozent), Straßenverkehr (21 Prozent) sowie Industrie und Haushalte (jeweils 12 Prozent).
Jeder Beitrag kann helfen, die Emissionen zu drosseln. So wird für kleine wie große Flugzeuge und Passagiermaschinen an klimafreundlichen Lösungen gearbeitet. Für den Wissenschaftler des Deutschen Zentrums für Luft- und Raumfahrt, Björn Nagel, ist es vorstellbar, dass in rund zehn Jahren Regionalflugzeuge mit Wasserstoffantrieb in der Luft sind.
Die FHWS ist von Anbeginn an dabei. Darüber hinaus können Studierende des neuen Bachelorstudiengangs Wasserstofftechnik an der FHWS sowie Masterstudierende und wissenschaftliche Mitarbeitende am Projekt mitarbeiten. Das Projekt bietet die Chance, gemeinsam mit Partnern aus der Luftfahrtindustrie die Zukunft einer CO2-armen Luftfahrt zu gestalten. Und vielleicht verwirklicht sich 2023 die Vision des Songwriters auf umweltfreundliche Art: „Wind Nord-Ost, Startbahn null-drei / Bis hier hör ich die Motoren / Wie ein Pfeil zieht sie vorbei“.