Nanotechnik Dieser Motor ist nur ein Molekül groß

publish-industry Verlag GmbH

Der Molekül-Motor funktioniert nach dem gleichen Prinzip wie ein normaler Motor auch.

Bild: DESY
12.07.2017

Mit Hilfe von Mikrowellen haben Forscher die exakte Struktur eines winzigen molekularen Motors entschlüsselt, die dem eines herkömmlichen Antriebs erstaunlich ähnelt.

Sponsored Content

Der Nano-Antrieb besteht aus einem einzigen Molekül mit 27 Kohlenstoff- und 20 Wasserstoffatomen (C₂₇H₂₀). Wie ein herkömmlicher Motor besitzt auch der molekulare Motor einen Rotor und einen Stator, die mit einer Achse verbunden sind. Die Analyse zeigt nun, wie die einzelnen Teile des Mini-Motors genau aufgebaut und arrangiert sind.

Der kleinste Motor der Welt unter der Lupe

Der künstliche molekulare Motor ist von dem Team des niederländischen Nobelpreisträgers Ben Feringa an der Universität Groningen hergestellt worden. Feringa, der auch Ko-Autor der Studie ist, hatte 2016 zusammen mit Jean-Pierre Sauvage von der Universität Straßburg und Sir Fraser Stoddart von der Northwestern University in den USA den Chemie-Nobelpreis für Entwurf und Herstellung von molekularen Maschinen bekommen.

Das jetzt untersuchte Motormolekül ist sehr vielversprechend für eine Reihe von Anwendungen, wie Hauptautor Sérgio Domingos von DESY und vom Hamburger Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) erläutert: „Chemiker sind ganz verrückt nach diesem Molekül und versuchen, es mit einer Reihe anderer Moleküle zu verbinden.“

Nano-Motor dreht sich mit dem Licht

Die Nano-Maschine wird durch Licht aktiviert und durchläuft dann eine Folge photochemischer und thermischer Schritte, durch die sie eine halbe Drehung vollführt. Ein erneuter Auslöser lässt den Motor dann eine komplette Rotation vollenden, so dass er in seine Ausgangsposition zurückkehrt.

„So eine lichtgesteuerte Aktivierung erlaubt, den Motor auf nicht-invasive und eng lokalisierte Weise fernzusteuern“, sagt Domingos. „So könnte das Molekül etwa mit einer Arznei verbunden werden, so dass sich diese lichtgesteuert präzise am gewünschten Ort im Körper ausschütten und aktivieren ließe – die lichtaktivierten Medikamente der Zukunft.

Aber auch Anwendungen wie eine lichtgesteuerte Katalyse oder eine Bewegungsübertragung von der molekularen Ebene auf die makroskopische Welt wären interessante Perspektiven. Für solche Anwendungen ist es wichtig, die genaue Struktur und Arbeitsweise des Motormoleküls zu verstehen.“

Das reine Molekül zum Vorschein bringen

Der atomare Aufbau des Motormoleküls war bereits mit Röntgenstrahlung untersucht worden. Für diese Untersuchungsmethode mussten die Moleküle zunächst zu Kristallen gezüchtet werden. Die Kristalle beugen die Röntgenstrahlung dann auf charakteristische Weise, und aus dem resultierenden Beugungsmuster lässt sich die Anordnung der Atome berechnen.

„Im Gegensatz dazu haben wir isolierte Moleküle in einem Gas untersucht“, erläutert Schnell, die Leitende Wissenschaftlerin bei DESY ist und am Center for Free-Electron Laser Science (CFEL) arbeitet, einer Kooperation von DESY, Universität Hamburg und der Max-Planck-Gesellschaft. „Auf diese Weise können wir das Molekül so sehen, wie es wirklich ist, frei von allen äußeren Einflüssen wie Lösungsmitteln oder chemischen Bindungen.“

Verwandte Artikel