Magnetisch angetriebene Flügel für Robotik und Medizin Bioinspirierte Robotik: Vom Monarchfalter zum fliegenden Roboter

Die potenziellen Einsatzmöglichkeiten der magnetischen Flügel sind vielfältig. Im Umweltbereich könnten so „beflügelte“ Roboter beispielsweise zur Überwachung von Bestäuberpopulationen oder für Studien zur Luftqualität genutzt werden.

Bild: publish-industry, DALL·E
28.01.2025

Forscherinnen und Forscher der Technischen Universität Darmstadt und des Helmholtz-Zentrums Dresden-Rossendorf haben eine neue Technologie vorgestellt: flexible Roboterflügel, die durch Magnetfelder gesteuert werden. Basierend auf den effizienten und anpassungsfähigen Flugeigenschaften des Monarchfalters bieten diese Flügel präzise Bewegungsmöglichkeiten ohne den Einsatz von Elektronik oder Batterien. Die bioinspirierte Entwicklung eröffnet Potenziale für Anwendungen in der Umweltüberwachung, bei Rettungseinsätzen sowie in der biomedizinischen Technik.

Monarchfalter sind bekannt für ihre herausragende Ausdauer und Anpassungsfähigkeit. Jährlich legen sie auf ihren Wanderungen zwischen Kanada und Mexiko tausende Kilometer zurück. Der Schlüssel zu dieser Leistung liegt in den einzigartigen Flügeln, die die Insekten durch eine Kombination aus aktiver Bewegung und passiver Biegung energieeffizient fliegen lassen. Diese Eigenschaften dienten als Inspiration für die Entwicklung der magnetisch angetriebenen Roboterflügel.

Das Team unter der Leitung von Professor Oliver Gutfleisch (Institut für Materialwissenschaft der TU Darmstadt) und Dr. Denys Makarov (Helmholtz-Zentrum Dresden-Rossendorf) baute Flügel aus einem flexiblen Kunststoff, in den magnetische Partikel eingebettet wurden. Externe Magnetfelder veranlassen diese Partikel, sich zu bewegen, wodurch sich die Flügel biegen und die Bewegungen des Schmetterlingsflugs imitieren.

Ultradünne, flexible Strukturen drucken

Der Entwicklungsprozess war herausfordernd: Mithilfe von 3D-Druck wurden zunächst zwölf verschiedene Flügeldesigns hergestellt. Einige Designs enthielten Adernstrukturen, die den natürlichen Flügeladern der Monarchfalter nachempfunden waren. Ziel war es, mit einer Kombination aus Finite-Elemente-Analysen und Experimenten herauszufinden, wie sich diese Muster auf die Beweglichkeit und Effizienz der Flügel auswirken.

Die Ergebnisse zeigen, dass größere Flügel mit Adernstrukturen besonders anpassungsfähig sowie unempfindlich sind und sich leichter biegen lassen. „Die größte Herausforderung bestand darin, ultradünne, flexible Strukturen zu drucken, die gleichzeitig robust genug sind, um den Belastungen standzuhalten“, erklärt Kilian Schäfer, einer der Hauptautoren der Studie.

Die potenziellen Einsatzmöglichkeiten der magnetischen Flügel sind vielfältig. Im Umweltbereich könnten so „beflügelte“ Roboter beispielsweise zur Überwachung von Bestäuberpopulationen oder für Studien zur Luftqualität genutzt werden. Da die Flügel kleines und energieeffizientes Design ermöglichen, wären solche Roboter ideal, um zum Beispiel in Katastrophengebiete vorzudringen, wo sie zur Suche und Rettung von Menschen eingesetzt werden könnten.

Einsatz in der Medizin

Der Fokus der Studie lag darauf, flexible magnetische Flügel zu entwickeln, die ohne elektronische Komponenten funktionieren. Der neue Ansatz kann jedoch auch auf andere Gestalt-verändernde Roboter übertragen werden. So eröffnet die neu entwickelte Technologie zum Beispiel Möglichkeiten für die Medizin: Leichtgewichtige Roboter mit präzise steuerbaren Bewegungen könnten in der minimalinvasiven Chirurgie eingesetzt werden, etwa für Operationen an empfindlichen Geweben. Darüber hinaus könnten die Prinzipien der bioinspirierten Robotik in der Entwicklung künstlicher Muskeln oder intelligenter Materialien Anwendung finden, die ihre Form je nach Bedarf verändern können.

Lesen Sie hier mehr zum Thema: Künstliche Muskeln bringen ein Roboterbein zum Laufen!

Bis zur Anwendung der neuen Technologie sind weitere Forschungsarbeiten nötig. „Die derzeitigen Flügel erfordern noch externe Magnetfelder, aber zukünftige Entwicklungen könnten miniaturisierte Magnetfeldgeneratoren integrieren, um autonome Bewegungen zu ermöglichen“, erklärt Muhammad Bilal Khan, ebenfalls Hauptautor der Studie. Das Team möchte erforschen, wie Modifikationen im Magnetfeld die komplexe Steuerung der Bewegungen und Flugrouten ermöglichen.

Firmen zu diesem Artikel
Verwandte Artikel