Ein Laserpointer in der Hand produziert keine merklichen Rückstoß-Kräfte, wenn er „abgefeuert“ wird – und das, obwohl er einen gerichteten Strom von Lichtteilchen aussendet. Der Grund dafür ist seine sehr große Masse im Vergleich zu den sehr kleinen Kraftstößen, welche die Lichtteilchen beim Verlassen des Laserpointers bewirken.
Seit langem ist jedoch klar, dass optische Rückstoßkräfte sehr wohl eine sehr große Wirkung auf entsprechend kleine und leichte Teilchen haben können. So zeigen zum Beispiel die Schweife von Kometen aufgrund des Lichtdrucks weg von der Sonne. Auch der Antrieb von leichten Raumfahrzeugen mit Lichtsegeln wird immer wieder diskutiert, zuletzt im Zusammenhang mit dem Projekt „star shot“, bei dem eine Flotte Miniatur-Raumschiffe zum Alpha Centauri geschickt werden soll.
Gewöhnliche Flug-Drohnen als Vorbilder
Würzburger Physiker um Professor Bert Hecht (Lehrstuhl für Experimentelle Physik 5, Arbeitsgruppe Nano-Optik) zeigen nun erstmals, dass es möglich ist, mikrometerkleine Objekte in einer wässrigen Umgebung mit Licht nicht nur effizient anzutreiben, sondern sie auch präzise zu steuern.
Dabei haben sie sich ein Beispiel an gewöhnlichen Flug-Drohnen genommen, bei denen vier unabhängige Rotoren eine vollständige Kontrolle der Bewegungen ermöglichen. Solche Steuermöglichkeiten eröffnen völlig neue Optionen für die gewöhnlich äußerst schwierige Handhabung von Nano- und Mikroobjekten, zum Beispiel für den Zusammenbau von Nanostrukturen, für die Analyse von Oberflächen mit Nanometerpräzision oder im Bereich der reproduktiven Medizin.
Polymerscheiben mit bis zu vier Lichtmotoren
Die Würzburger Mikrodrohnen bestehen aus einer transparenten Polymerscheibe von 2,5 Mikrometer Durchmesser. In diese Scheibe sind bis zu vier Lichtmotoren aus Gold eingebettet.
„Diese Motoren basieren auf in Würzburg entwickelten optischen Antennen – also auf winzigen metallischen Strukturen mit Abmessungen im Bereich der Lichtwellenlänge“, sagt Xiaofei Wu, Postdoc in der Arbeitsgruppe Hecht.
„Diese Antennen wurden speziell für den Empfang von zirkular polarisiertem Licht optimiert. Dadurch können die Motoren unabhängig von der Orientierung der Drohne das Licht empfangen, was entscheidend für die Anwendbarkeit ist. In einem weiteren Schritt wird die empfangene Lichtenergie dann vom Lichtmotor in eine bestimmte Richtung abgestrahlt. Dies geschieht sowohl in Abhängigkeit des Drehsinns der Polarisation (mit oder gegen den Uhrzeigersinn) als auch für zwei verschiedene Lichtwellenlängen.“
Erst mit dieser Idee wurde es den Forschern möglich, ihre Mikrodrohnen effizient und präzise zu steuern. Aufgrund der sehr kleinen Masse der Drohnen können dabei extreme Beschleunigungen erreicht werden. Die Entwicklung der Nanodrohnen war anspruchsvoll. Sie startete schon 2016 mit einer Risikofinanzierung durch die VW-Stiftung.
Präzise Herstellung aus einkristallinem Gold
Entscheidend für die Funktion der Nanodrohnen ist die äußerst präzise Herstellung der Nanomotoren. Helium-Ionen zur Strukturierung von einkristallinem Gold haben sich dabei als Gamechanger entpuppt. In weiteren Schritten wird der Drohnenkörper mittels Elektronenstrahllithografie hergestellt. In einem letzten Schritt müssen die Drohnen dann von der Oberfläche gelöst und in Lösung gebracht werden.
In weiteren Experimenten soll für die Drohnensteuerung nun eine Rückkopplungsschleife implementiert werden, um externe Einflüsse automatisch korrigieren zu können. Weiterhin wird daran gearbeitet, die Steuermöglichkeiten zu vervollständigen, um auch die Höhe der Drohnen über der Oberfläche zu kontrollieren. Und natürlich ist es ein weiteres Ziel, Werkzeuge an den Mikrodrohnen anzubringen.