Basis für genauere Molekülvorhersagen und Chemiesysteme Wasserstoffbrückenbindung bei H2S entschlüsselt

Philipp Meyer und Svenja Jäger im Labor an der Ruhr-Universität Bochum

Bild: Yvonne Kasper
12.11.2024

Eiswürfel und Eiersalat wirken unterschiedlich, doch chemisch sind Wasser (H2O) und Schwefelwasserstoff (H2S) verwandt. Die Bindung zwischen Wassermolekülen ist gut erforscht, jedoch war das Verhalten von H2S weniger bekannt. Forschende des Bochumer Exzellenzclusters „Ruhr Explores Solvation“ (RESOLV) liefert nun Erkenntnisse dazu.

Die experimentellen Ergebnisse der Bochumer Gruppe von Prof. Dr. Martina Havenith wurden durch theoretische Studien von Prof. Dr. Joel Bowman von der Emory University in Atlanta und Prof. Dr. Ad van der Avoird von der Radboud University in Nijmegen ergänzt.

H2S gilt als eines der einfachsten schwefelhaltigen Moleküle im interstellaren Medium und als wesentlicher Bestandteil verschiedener biologischer Prozesse bei Säugetieren. Es wurde bereits mit mehreren Infrarotstudien untersucht, aber einige Unsicherheiten über das Verhalten von H2S blieben bisher bestehen.

Hochauflösende IR-Spektroskopie in suprafluiden Helium-Nanotröpfchen

Die spektroskopische Technik, die zur Untersuchung der H2S-Moleküle verwendet wurde, ist unkonventionell. Um das Experiment durchzuführen, wurden einzelne Moleküle von H2S in suprafluide Heliumtröpfchen in einer Vakuumkammer eingebettet. Durch Variation der Menge an H2S-Gas in der Vakuumkammer konnten die Bochumer Forschenden Svenja Jäger, Philipp Meyer und Jai Khatri die Anzahl der von den Heliumtröpfchen aufgenommenen Moleküle statistisch kontrollieren und die Bedingungen so optimieren, dass im Durchschnitt immer zwei Moleküle gleichzeitig aufgenommen werden.

Die Tröpfchen bestehen aus suprafluidem Helium, welches im Vergleich zu normalen Flüssigkeiten einige einzigartige Eigenschaften hat. Einige dieser besonderen Merkmale sind die sehr hohe Wärmeleitfähigkeit, die die Tröpfchen und ihre eingebetteten Moleküle nahe dem absoluten Nullpunkt hält, die Transparenz über den Spektralbereich vom UV bis zum fernen Infrarot und die fast nicht vorhandene Wechselwirkung der Flüssigkeit mit den eingebetteten Molekülen. Diese drei Merkmale sind entscheidend für die Durchführung des Experiments, da sie es den Forschenden ermöglichen, die Wechselwirkung zwischen zwei H2S-Molekülen ohne jegliche Störung durch andere Moleküle oder thermische Energie zu untersuchen. Dies führte zu hochauflösenden IR-Spektren, die nicht nur die Schwingungsbewegungen des H2S-Moleküls, sondern auch dessen Rotationen und Tunnelspaltungen zeigten. Der Begriff Tunnelspaltung beschreibt die Trennung von Energieniveaus aufgrund einer kleinen Energiebarriere zwischen zwei verschiedenen Strukturen desselben Moleküls.

Grundlage für ein besseres Verständnis der Wasserstoffbrückenbindung

Die experimentellen Ergebnisse wurden durch theoretische Berechnungen ergänzt, die es ermöglichten, die Energieaufspaltung der H2S-Moleküle im Grund- und angeregten Zustand zu beschreiben. Im Vergleich zu Wasser stellten die Forschenden fest, dass die Bindung zwischen H2S-Molekülen im Grundzustand flexibler ist. Bei Anregung eines der Moleküle wird die Wasserstoffbindung derjenigen in Wasser sehr ähnlich.

Darüber hinaus konnten die Forschenden weitere Schwingungssignale charakterisieren und neu zuordnen, die bereits von anderen Gruppen veröffentlicht wurden. Damit stellen die Ergebnisse einen empfindlichen Test für modernste Berechnungsmethoden dar. Diese Methoden werden verwendet, um die Wechselwirkungen verschiedener Moleküle vorherzusagen. Um sicherzustellen, dass diese Vorhersagen korrekt sind, müssen sie mit Experimenten verglichen werden. Die Untersuchung der Bindung zwischen kleinen Molekülen wie Wasser und in diesem Fall H2S verbessert das Verständnis der grundlegenden Chemie erheblich und ermöglicht daher die Entwicklung noch präziserer theoretischer Berechnungen sowie das Verständnis komplexerer chemischer Systeme.

Bildergalerie

  • Das Bochumer Forschungsteam: Martina Havenith, Gerhard Schwaab, Philipp Meyer, Svenja Jäger und Stefan Henkel (von links)

    Das Bochumer Forschungsteam: Martina Havenith, Gerhard Schwaab, Philipp Meyer, Svenja Jäger und Stefan Henkel (von links)

    Bild: Yvonne Kasper

Firmen zu diesem Artikel
Verwandte Artikel