Klimaexperten sind sich einig: Für die Bewältigung der Klimakrise werden wir nicht nur den Ausstoß von Kohlendioxid (CO2) vermindern, sondern das klimaschädliche Gas auch direkt aus Luft und Abgasen herausfiltern müssen. Dafür arbeiten Wissenschaftler an sogenannten „Direct Air Capture“-Technologien und sind auf der Suche geeigneten Materialien, die CO2-Moleküle gut binden (adsorbieren) und – bei Temperaturerhöhung – auch wieder in konzentrierter Form freigeben, um das Gas beispielsweise unterirdisch speichern zu können.
Lesen Sie hier mehr zum Thema: Carbon Capture und Storage aus der Luft!
Chemische Synthese des Materials COF-999 gelungen
Ein internationales Forschungsteam, dem Prof. Dr. Joachim Sauer von der Humboldt-Universität zu Berlin (HU) angehört, berichtet über die chemische Synthese des speziellen Materials, COF-999, die dem Doktoraden Zihui Zhou aus der Forschungsgruppe von Prof. Dr. Omar Yaghi an der University of California (UC) at Berkeley gelungen ist. Bei dem Material handelt sich um eine organische Gerüstverbindung (Covalent Organic Framework – COF), in der Polyamine, die in den Poren an das Gerüst gebunden sind, für die Adsorption der Kohlendioxid-Moleküle sorgen.
„Das Besondere ist, dass das Material nicht nur eine sehr hohe Aufnahmekapazität für CO2 hat, sondern dass diese in Anwesenheit von Wasser sogar mehrfach höher ist. Wasser, das immer in der Umgebungsluft und Abgasen enthalten ist, stört hier nicht, sondern hat überraschenderweise einen äußerst positiven Effekt“, sagt Sauer, renommierter Quantenchemiker und Senior Researcher am Institut für Chemie der Humboldt-Universität.
HU-Forscher klärt Funktionsweise des Materials durch quantenchemische Berechnungen auf
Als Mitglied des Forschungsteams war Joachim Sauer für die quantenchemische Aufklärung der Wirkungsweise des Materials auf atomarer Ebene verantwortlich. Denn die Erkenntnisse, die in Experimenten gewonnen wurden, reichten nicht aus, um zu bestimmen, an welcher Stelle genau sich die Atome (Amingruppen) in der porösen Festkörperstruktur befinden, an die die CO2-Moleküle „andocken“. Deshalb musste im ersten Schritt ein Strukturmodell aufgestellt werden, das mit den Erkenntnissen aus den Experimenten konform ist. Im zweiten kritischen Schritt ging es darum, zu berechnen, wie stark CO2 an die verschiedenen Amingruppen in unterschiedlichen Positionen gebunden wird und wie sich das in Anwesenheit von Wassermolekülen (H2O) ändert.
Prof. Dr. Joachim Sauer schließt ab: „Unsere quantenchemischen Rechnungen sind unverzichtbar, weil das atomare Verständnis der Funktionsweise die Basis für die Entwicklung weiter verbesserter Materialien ist. Daran arbeiten wir zurzeit mit unseren Partnern an der UC Berkeley und der Universität Chicago.“