Potenziale für KI und Edge-Computing Ein neuromorpher Chip für die Industrie

„Wir konnten zeigen, dass diese künstlichen Synapsen selbst komplexe Rechenaufgaben wie Matrixmultiplikationen effizient bewältigen können“, berichtet Heidemarie Krüger.

Bild: DALL·E, publish-industry
15.01.2025

Die Physikerin Heidemarie Krüger arbeitet mit ihrem Dresdner Start-up „Techifab“ an neuromorphen Chips, die Informationen ähnlich wie das menschliche Gehirn verarbeiten. Als Forscherin am Leibniz-Institut für Photonische Technologien und an der Friedrich-Schiller-Universität Jena entwickelt sie eine neue Technologie, die es ermöglicht, Daten direkt am Ort ihrer Entstehung zu verarbeiten und zu speichern – ohne den energieaufwändigen Transfer zwischen Prozessor und Speicher.

Gemeinsam mit ihrem Team entwickelt Krüger Memristor-basierte Bauteile, die neue Maßstäbe in Sachen Energieeffizienz und Rechenleistung setzen sollen. Diese echtzeittaugliche und ressourceneffiziente Technologie könnte etwa selbstfahrende Autos und Industrieanlagen unterstützen. „Unser Ziel ist es, das Gehirn als Vorbild zu nutzen, um eine Technologie zu schaffen, die mit minimalem Energieverbrauch komplexe Entscheidungen logisch nachvollziehbar trifft“, sagt Heidemarie Krüger.

Das Herzstück: Memristoren mit Gedächtnis und Lernfähigkeit

Der neuromorphe Chip basiert auf Memristoren – Bauelementen, die ähnlich wie Synapsen im Gehirn arbeiten. Sie speichern nicht nur Informationen, sondern können diese gleichzeitig verarbeiten. Während konventionelle Computer die Daten permanent zwischen Speicher und Prozessor austauschen, arbeitet diese Technologie lokal. Dies reduziert Energieverluste erheblich und ermöglicht eine schnelle, dezentrale Datenanalyse.

„Ein wesentlicher Unterschied ist die Fähigkeit der Memristoren, kontinuierliche Zwischenzustände zu verarbeiten – also nicht nur ‚0‘ und ‚1‘, sondern auch Werte dazwischen“, erklärt Krüger. Diese flexible Datenverarbeitung eröffnet neue Möglichkeiten für Algorithmen, die neuronale Netzwerke nachbilden. Anwendungen reichen von der vorausschauenden Maschinenwartung bis hin zu Echtzeitanalysen in sicherheitskritischen Bereichen wie dem autonomen Fahren.

Lesen Sie hier mehr zum Thema: KI mit neuromorphen Rechnen verbessern!

Von der Entdeckung im Labor zur industriellen Anwendung

Der Weg zu dieser Entwicklung begann mit einer zufälligen Entdeckung im Labor im Jahr 2011: Während einer Materialanalyse beobachtete Krügers Team eine charakteristische „Schleifen“-Kurve – ein Hinweis auf das Verhalten eines Memristors mit hysteretischer Memristanz. Diese Eigenschaft ermöglicht es dem Bauteil, sich an frühere Rechenoperationen zu „erinnern“ und so komplexe Berechnungen direkt auszuführen.

Das führte zur Idee, künstliche Synapsen aus einer Materialkombination aus Bismut und Eisenoxid zu entwickeln. Um aus den künstlichen Synapsen einen funktionsfähigen Chip zu entwickeln, wurde das Startup von der Bundesagentur für Sprunginnovationen mit einem zweistelligen Millionenbetrag gefördert. „Wir konnten zeigen, dass diese künstlichen Synapsen selbst komplexe Rechenaufgaben wie Matrixmultiplikationen effizient bewältigen können“, berichtet Krüger. Diese Rechenoperationen bilden beispielsweise die Grundlage beim Training vieler KI-Anwendungen und Bildverarbeitungsalgorithmen.

Technologie mit Potenzial für Edge-Computing

Die Architektur der Memristoren erlaubt es, Daten direkt an der Quelle zu verarbeiten – eine Schlüsselkomponente für das sogenannte Edge-Computing, bei dem Daten nicht an zentrale Cloud-Systeme übertragen werden müssen. „Das bedeutet mehr Sicherheit und Unabhängigkeit, da sensible Daten lokal bleiben“, betont Krüger. Gerade in der industriellen Sensorik könnte dies ein großer Vorteil sein, um beispielsweise erste Anzeichen von Verschleiß zu erfassen und Ausfälle zu vermeiden.

In ersten Pilotprojekten testet Krügers Team die Technologie gemeinsam mit der Technischen Universität Bergakademie Freiberg bereits unter realen Bedingungen. Dabei hat sich gezeigt, dass der neuromorphe Chip sogar kleinste Veränderungen zuverlässig erkennen und Verschleißmuster präzise prognostizieren kann.

Ein nachhaltiger Weg zu KI-Systemen mit höherer Energieeffizienz

Während klassische Prozessoren immer mehr Transistoren benötigen, um die wachsende Datenflut zu bewältigen, stößt das traditionelle Chipdesign an physikalische und energetische Grenzen. Neuromorphe Ansätze kombinieren Speicher- und Recheneinheit, was den Energiebedarf senkt und das Potenzial für KI-Systeme erheblich erweitert. „Unser Ziel ist es, nicht nur Datensätze zu analysieren, sondern auch zu lernen, Muster zu erkennen und flexibel auf neue Situationen zu reagieren – ohne eine ständige Verbindung zu externen Rechenzentren“, erklärt Krüger. Damit könnte die Technologie in Zukunft dazu beitragen, Rechenzentren energieeffizienter zu gestalten und KI-Anwendungen mit deutlich weniger Ressourcenbedarf zu entwickeln.

Krügers aktueller Prototyp verfügt über 32 Memristoren. In der nächsten Entwicklungsstufe sollen es über 200 werden, um komplexe neuronale Netze abzubilden und neue Anwendungen in autonomen Systemen zu ermöglichen.

Verwandte Artikel